Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.766
Filtrar
1.
FASEB J ; 38(7): e23608, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593315

RESUMO

Tooth development is a complex process involving various signaling pathways and genes. Recent findings suggest that ion channels and transporters, including the S100 family of calcium-binding proteins, may be involved in tooth formation. However, our knowledge in this regard is limited. Therefore, this study aimed to investigate the expression of S100 family members and their functions during tooth formation. Tooth germs were extracted from the embryonic and post-natal mice and the expression of S100a6 was examined. Additionally, the effects of S100a6 knockdown and calcium treatment on S100a6 expression and the proliferation of SF2 cells were examined. Microarrays and single-cell RNA-sequencing indicated that S100a6 was highly expressed in ameloblasts. Immunostaining of mouse tooth germs showed that S100a6 was expressed in ameloblasts but not in the undifferentiated dental epithelium. Additionally, S100a6 was localized to the calcification-forming side in enamel-forming ameloblasts. Moreover, siRNA-mediated S100a6 knockdown in ameloblasts reduced intracellular calcium concentration and the expression of ameloblast marker genes, indicating that S100a6 is associated with ameloblast differentiation. Furthermore, S100a6 knockdown inhibited the ERK/PI3K signaling pathway, suppressed ameloblast proliferation, and promoted the differentiation of the dental epithelium toward epidermal lineage. Conclusively, S100a6 knockdown in the dental epithelium suppresses cell proliferation via calcium and intracellular signaling and promotes differentiation of the dental epithelium toward the epidermal lineage.


Assuntos
Cálcio , Fosfatidilinositol 3-Quinases , Animais , Camundongos , Ameloblastos/metabolismo , Cálcio/metabolismo , Diferenciação Celular , Células Epiteliais , Odontogênese/genética , Fosfatidilinositol 3-Quinases/metabolismo
2.
J Mol Histol ; 55(2): 149-157, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38407765

RESUMO

Cytodifferentiation of odontogenic cells, a late stage event in odontogenesis is based on gene regulation. However, studies on the identification of the involved genes are scarce. The present study aimed to search for molecules for the cytodifferentiation of ameloblastic cells in rats. Differential display-PCR revealed a differentially expressed gene between cap/early bell stage and hard tissue formation stage in molars. This gene was identified as N-myc Downregulated Gene 1 (Ndrg1), which is the first report in tooth development. Real time PCR and western blotting confirmed that the mRNA level of Ndrg1 was higher during enamel formation than the cap stage. Ndrg1 expression was upregulated in the early bell, crown, and root stages in a time-dependent manner. These patterns of expression were similar in Ndrg2, but Ndrg3 and Ndrg4 levels did not change during the developmental stages. Immunofluorescence revealed that strong immunoreactivity against Ndrg1 were detected in differentiated ameloblasts only, not inner enamel epithelium, odontoblasts and ameloblastic cells in defected enamel regions. Alkaline phosphatase and alizarin red s stains along with real time PCR, revealed that Ndrg1 and Ndrg2 were involved in cytodifferentiation and enamel matrix mineralization by selectively regulating amelogenin and ameloblastin genes in SF2 ameloblastic cells. These results suggest that Ndrg may play a crucial functional role in the cytodifferentiation of ameloblasts for amelogenesis.


Assuntos
Amelogênese , Odontogênese , Animais , Ratos , Ameloblastos/metabolismo , Amelogênese/genética , Dente Molar , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/genética , Odontogênese/genética , Proteínas/metabolismo
4.
J Dent Res ; 103(2): 156-166, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38058147

RESUMO

Autophagy is one of the intracellular degradation pathways and maintains cellular homeostasis, regulating the stress response, cell proliferation, and signal transduction. To elucidate the role of autophagy in the maintenance of dental epithelial stem cells and the subsequent enamel formation, we analyzed autophagy-deficient mice in epithelial cells (Atg7f/f;KRT14-Cre mice), focusing on the influence of aging and stress environments. We also performed in vitro cell and organ culture experiments with an autophagy inhibitor. In young Atg7f/f;KRT14-Cre mice, morphological change was not obvious in maxillary incisors, except for the remarkable cell death in the stratum intermedium of the transitional stage. However, under stress conditions of hyperglycemia, the incisor color changed to white in diabetes Atg7f/f;KRT14-Cre mice. Regarding dental epithelial stem cells, the shape of the apical bud region of the incisor became irregular with age, and odontoma was formed in aged Atg7f/f;KRT14-Cre mice. In addition, the shape of apical bud culture cells of Atg7f/f;KRT14-Cre mice became irregular and enlarged atypically, with epigenetic changes during culture, suggesting that autophagy deficiency may induce tumorigenesis in dental epithelial cells. The epigenetic change and upregulation of p21 expression were induced by autophagy inhibition in vivo and in vitro. These findings suggest that autophagy is important for the regulation of stem cell maintenance, proliferation, and differentiation of ameloblast-lineage cells, and an autophagy disorder may induce tumorigenesis in odontogenic epithelial cells.


Assuntos
Envelhecimento , Ameloblastos , Camundongos , Animais , Células Epiteliais , Autofagia , Carcinogênese
5.
J Dent Res ; 103(1): 81-90, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37990471

RESUMO

Histone methylation assumes a crucial role in the intricate process of enamel development. Our study has illuminated the substantial prevalence of H3K4me3 distribution, spanning from the cap stage to the late bell stage of dental germs. In order to delve into the role of H3K4me3 modification in amelogenesis and unravel the underlying mechanisms, we performed a conditional knockout of Ash2l, a core subunit essential for the establishment of H3K4me3 within the dental epithelium of mice. The absence of Ash2l resulted in reduced H3K4me3 modification, subsequently leading to abnormal morphology of dental germ at the late bell stage. Notably, knockout of Ash2l resulted in a loss of polarity in ameloblasts and odontoblasts. The proliferation and apoptosis of the inner enamel epithelium cells underwent dysregulation. Moreover, there was a notable reduction in the expression of matrix-related genes, Amelx and Dspp, accompanied with impaired enamel and dentin formation. Cut&Tag-seq (cleavage under targets and tagmentation sequencing) analysis substantiated a reduction of H3K4me3 modification on Shh, Trp63, Sp6, and others in the dental epithelium of Ash2l knockout mice. Validation through real-time polymerase chain reaction, immunohistochemistry, and immunofluorescence consistently affirmed the observed downregulation of Shh and Sp6 in the dental epithelium following Ash2l knockout. Intriguingly, the expression of Trp63 isomers, DNp63 and TAp63, was perturbed in Ash2l defect dental epithelium. Furthermore, the downstream target of TAp63, P21, exhibited aberrant expression within the cervical loop of mandibular first molars and incisors. Collectively, our findings suggest that ASH2L orchestrates the regulation of crucial amelogenesis-associated genes, such as Shh, Trp63, and others, by modulating H3K4me3 modification. Loss of ASH2L and H3K4me3 can lead to aberrant differentiation, proliferation, and apoptosis of the dental epithelium by affecting the expression of Shh, Trp63, and others genes, thereby contributing to the defects of amelogenesis.


Assuntos
Amelogênese , Proteínas do Esmalte Dentário , Animais , Camundongos , Ameloblastos/metabolismo , Amelogênese/genética , Esmalte Dentário/metabolismo , Proteínas do Esmalte Dentário/genética , Proteínas do Esmalte Dentário/metabolismo , Metilação , Camundongos Knockout
6.
J Dent Res ; 103(1): 51-61, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37950483

RESUMO

Dental enamel formation is coordinated by ameloblast differentiation, production of enamel matrix proteins, and crystal growth. The factors regulating ameloblast differentiation are not fully understood. Here we show that the high mobility group N (HMGN) nucleosomal binding proteins modulate the rate of ameloblast differentiation and enamel formation. We found that HMGN1 and HMGN2 proteins are downregulated during mouse ameloblast differentiation. Genetically altered mice lacking HMGN1 and HMGN2 proteins show faster ameloblast differentiation and a higher rate of enamel deposition in mice molars and incisors. In vitro differentiation of induced pluripotent stem cells to dental epithelium cells showed that HMGN proteins modulate the expression and chromatin accessibility of ameloblast-specific genes and affect the binding of transcription factors epiprofin and PITX2 to ameloblast-specific genes. Our results suggest that HMGN proteins regulate ameloblast differentiation and enamel mineralization by modulating lineage-specific chromatin accessibility and transcription factor binding to ameloblast regulatory sites.


Assuntos
Proteínas do Esmalte Dentário , Proteína HMGN1 , Proteína HMGN2 , Animais , Camundongos , Ameloblastos/metabolismo , Proteína HMGN2/genética , Proteína HMGN2/metabolismo , Proteína HMGN1/genética , Proteína HMGN1/metabolismo , Epigênese Genética , Diferenciação Celular/genética , Proteínas HMGN/genética , Proteínas HMGN/metabolismo , Fatores de Transcrição/metabolismo , Proteínas do Esmalte Dentário/genética , Proteínas do Esmalte Dentário/metabolismo , Cromatina/metabolismo , Amelogenina/metabolismo
7.
Biol Trace Elem Res ; 202(3): 1103-1114, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37410266

RESUMO

Fluoride can be widely ingested from the environment, and its excessive intake could result in adverse effects. Dental fluorosis is an early sign of fluoride toxicity which can cause esthetic and functional problems. Though apoptosis in ameloblasts is one of the potential mechanisms, the specific signal cascade is in-conclusive. High-throughput sequencing and molecular biological techniques were used in this study to explore the underlying pathogenesis of dental fluorosis, for its prevention and treatment. A fluorosis cell model was established. Viability and apoptosis rate of mouse ameloblast-derived cell line (LS8 cells) was measured using cell counting kit-8 (CCK-8) assay and flow cytometry analysis. Cells were harvested with or without 2-mM sodium fluoride (NaF) stimulation for high-throughput sequencing. Based on the sequencing data, subcellular structures, endoplasmic reticulum stress (ERS), and apoptosis related biomarkers were verified using transmission electron microscopy, quantitative real-time polymerase chain reaction, and Western blotting techniques. Expression of ERS markers, apoptosis related proteins, and enamel formation enzymes were detected using Western blotting after addition of 4-phenylbutyrate (4-PBA). NaF-inhibited LS8 cells displayed time- and dose- dependent viability. Additionally, apoptosis and morphological changes were observed. RNA-sequencing data showed that protein processing in endoplasmic reticulum was obviously affected. ERS and apoptosis were induced by excessive NaF. Downregulation of kallikrein-related peptidase 4 (KLK4) was also observed. Inhibition of ERS by 4-PBA rescued the apoptotic and functional protein changes in cells. Excessive fluoride induces apoptosis by activating ERS, which is mediated by GRP-78/PERK/CHOP signaling. Key proteinase is present in maturation-stage enamel; KLK4 was also affected by fluoride, but rescued by 4-PBA. This study presents a possibility for therapeutic strategies for dental fluorosis, while further exploration is required.


Assuntos
Butilaminas , Fluoretos , Fluorose Dentária , Camundongos , Animais , Fluoretos/farmacologia , Fluoretos/metabolismo , Ameloblastos , Fluorose Dentária/metabolismo , Chaperona BiP do Retículo Endoplasmático , Fluoreto de Sódio/farmacologia , Apoptose , Estresse do Retículo Endoplasmático
8.
Int J Oral Sci ; 15(1): 55, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062012

RESUMO

Ameloblasts are specialized cells derived from the dental epithelium that produce enamel, a hierarchically structured tissue comprised of highly elongated hydroxylapatite (OHAp) crystallites. The unique function of the epithelial cells synthesizing crystallites and assembling them in a mechanically robust structure is not fully elucidated yet, partly due to limitations with in vitro experimental models. Herein, we demonstrate the ability to generate mineralizing dental epithelial organoids (DEOs) from adult dental epithelial stem cells (aDESCs) isolated from mouse incisor tissues. DEOs expressed ameloblast markers, could be maintained for more than five months (11 passages) in vitro in media containing modulators of Wnt, Egf, Bmp, Fgf and Notch signaling pathways, and were amenable to cryostorage. When transplanted underneath murine kidney capsules, organoids produced OHAp crystallites similar in composition, size, and shape to mineralized dental tissues, including some enamel-like elongated crystals. DEOs are thus a powerful in vitro model to study mineralization process by dental epithelium, which can pave the way to understanding amelogenesis and developing regenerative therapy of enamel.


Assuntos
Esmalte Dentário , Durapatita , Camundongos , Animais , Durapatita/farmacologia , Durapatita/análise , Durapatita/metabolismo , Esmalte Dentário/metabolismo , Ameloblastos/metabolismo , Amelogênese , Células-Tronco , Organoides
9.
Sci Rep ; 13(1): 18829, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914726

RESUMO

Enamel forming ameloblasts move away from the dentino-enamel junction and also move relative to each other to establish enamel shape during the secretory stage of enamel development. Matrix metalloproteinase-20 (MMP20) is a tooth specific proteinase essential for proper enamel formation. We previously reported that MMP20 cleaves cadherins and may regulate ameloblast movement. Here, we used an Amelx promoter driven tdTomato reporter to label mouse ameloblasts. With these transgenic mice, we assessed ameloblast mobility group dynamics and gene expression. Three-dimensional imaging of mouse ameloblasts were observed in hemi-mandibles by using a tissue clearing technique. The three-dimensional ameloblast layer in Tg(Amelx-Mmp20) mice that overexpress MMP20 was uneven and the ameloblasts migrated away from this layer. Mouse ameloblast movement toward incisal tips was monitored by ex vivo time-lapse imaging. Gene expression related to cell migration and adhesion was analyzed in ameloblasts from wild-type mice, Mmp20-/- mice with no functional MMP20 and from Tg(Amelx-Mmp20) overexpressing mice. Gene expression was altered in Mmp20-/- and Tg(Amelx-Mmp20) mice compared to wild type. Among the genes assessed, those encoding laminins and a gap junction protein were upregulated in Mmp20-/- mice. New techniques and findings described in this study may lead to an improved understanding of ameloblast movement during enamel formation.


Assuntos
Ameloblastos , Metaloproteinase 20 da Matriz , Camundongos , Animais , Ameloblastos/metabolismo , Metaloproteinase 20 da Matriz/metabolismo , Camundongos Transgênicos , Caderinas/metabolismo , Expressão Gênica
10.
Nature ; 624(7992): 653-662, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37993717

RESUMO

Ameloblasts are specialized epithelial cells in the jaw that have an indispensable role in tooth enamel formation-amelogenesis1. Amelogenesis depends on multiple ameloblast-derived proteins that function as a scaffold for hydroxyapatite crystals. The loss of function of ameloblast-derived proteins results in a group of rare congenital disorders called amelogenesis imperfecta2. Defects in enamel formation are also found in patients with autoimmune polyglandular syndrome type-1 (APS-1), caused by AIRE deficiency3,4, and in patients diagnosed with coeliac disease5-7. However, the underlying mechanisms remain unclear. Here we show that the vast majority of patients with APS-1 and coeliac disease develop autoantibodies (mostly of the IgA isotype) against ameloblast-specific proteins, the expression of which is induced by AIRE in the thymus. This in turn results in a breakdown of central tolerance, and subsequent generation of corresponding autoantibodies that interfere with enamel formation. However, in coeliac disease, the generation of such autoantibodies seems to be driven by a breakdown of peripheral tolerance to intestinal antigens that are also expressed in enamel tissue. Both conditions are examples of a previously unidentified type of IgA-dependent autoimmune disorder that we collectively name autoimmune amelogenesis imperfecta.


Assuntos
Amelogênese Imperfeita , Autoanticorpos , Doença Celíaca , Poliendocrinopatias Autoimunes , Humanos , Amelogênese Imperfeita/complicações , Amelogênese Imperfeita/imunologia , Autoanticorpos/imunologia , Doença Celíaca/complicações , Doença Celíaca/imunologia , Imunoglobulina A/imunologia , Poliendocrinopatias Autoimunes/complicações , Poliendocrinopatias Autoimunes/imunologia , Proteínas/imunologia , Proteínas/metabolismo , Ameloblastos/metabolismo , Esmalte Dentário/imunologia , Esmalte Dentário/metabolismo , Antígenos/imunologia , Antígenos/metabolismo , Intestinos/imunologia , Intestinos/metabolismo
11.
J Egypt Natl Canc Inst ; 35(1): 34, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37899408

RESUMO

BACKGROUND: Ameloblastic fibro-dentinoma is considered a rare, benign, mixed odontogenic tumor that occurs mainly in the posterior mandible in the 1st-2nd decade of life. Although the clinical behavior of Ameloblastic fibro-dentinoma is similar to that of ameloblastic fibroma, there is a debate about whether Ameloblastic fibro-dentinoma is a developing hamartomatous odontoma or a separate neoplastic odontogenic tumor like ameloblastic fibroma. However, it is important to understand the histopathogenesis of this rare tumor. CASE PRESENTATION: A case report presenting an 11-year-old male child with a swelling in the posterior mandible. Radiographic examination revealed a multilocular lesion with mixed radiodensity related to the impacted lower left second premolar tooth. Incisional biopsy was done, and microscopic examination revealed cords and nests of odontogenic follicles lined by ameloblast-like cells and central stellate reticulum-like cells in the primitive ecto-mesenchymal stroma with areas of dentinoid material and osteodentin. The diagnosis was ameloblastic fibro-dentinoma. Surgical excision of the lesion was done, and the patient was followed up for 1 year without evidence of recurrence. CONCLUSION: Reporting such a rare entity clarifies the debate about its nature and the importance of early diagnosis of lesions that are associated with unerupted teeth showing how it is effective in early management and prognosis.


Assuntos
Fibroma , Neoplasias Mandibulares , Tumores Odontogênicos , Odontoma , Masculino , Criança , Humanos , Neoplasias Mandibulares/diagnóstico por imagem , Neoplasias Mandibulares/cirurgia , Ameloblastos/patologia , Tumores Odontogênicos/diagnóstico por imagem , Tumores Odontogênicos/cirurgia , Odontoma/diagnóstico por imagem , Odontoma/cirurgia
12.
J Mol Histol ; 54(6): 665-673, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37787911

RESUMO

Histone lactylation on its lysine (K) residues has been reported to have indispensable roles in lung fibrosis, embryogenesis, neural development, inflammation, and tumors. However, little is known about the lactylation activity towards histone lysine residue during tooth development. We investigated the dynamic patterns of lactate-derived histone lysine lactylation (Kla) using a pan-Kla antibody during murine tooth development, including lower first molar and lower incisor. The results showed that pan-Kla exhibited temporo-spatial patterns in both dental epithelium and mesenchyme cells during development. Notably, pan-Kla was identified in primary enamel knot (PEK), stratum intermedium (SI), stellate reticulum (SR), dental follicle cells, odontoblasts, ameloblasts, proliferating cells in dental mesenchyme, as well as osteoblasts around the tooth germ. More importantly, pan-Kla was also identified to be co-localized with neurofilament during tooth development, suggesting histone lysine lactylation may be involved in neural invasion during tooth development. These findings suggest that histone lysine lactylation may play important roles in regulating tooth development.


Assuntos
Histonas , Lisina , Camundongos , Animais , Odontogênese , Germe de Dente , Ameloblastos
13.
Dev Cell ; 58(20): 2163-2180.e9, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37582367

RESUMO

Tooth enamel secreted by ameloblasts (AMs) is the hardest material in the human body, acting as a shield to protect the teeth. However, the enamel is gradually damaged or partially lost in over 90% of adults and cannot be regenerated due to a lack of ameloblasts in erupted teeth. Here, we use single-cell combinatorial indexing RNA sequencing (sci-RNA-seq) to establish a spatiotemporal single-cell census for the developing human tooth and identify regulatory mechanisms controlling the differentiation process of human ameloblasts. We identify key signaling pathways involved between the support cells and ameloblasts during fetal development and recapitulate those findings in human ameloblast in vitro differentiation from induced pluripotent stem cells (iPSCs). We furthermore develop a disease model of amelogenesis imperfecta in a three-dimensional (3D) organoid system and show AM maturation to mineralized structure in vivo. These studies pave the way for future regenerative dentistry.


Assuntos
Esmalte Dentário , Odontogênese , Dente , Humanos , Ameloblastos/metabolismo , Amelogênese/genética
14.
J Dent Res ; 102(10): 1162-1171, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37449307

RESUMO

Teeth consist of 3 mineralized tissues: enamel, dentin, and cementum. Tooth malformation, the most common craniofacial anomaly, arises from complex genetic and environmental factors affecting enamel structure, size, shape, and tooth eruption. Hyaluronic acid (HA), a primary extracellular matrix component, contributes to structural and physiological functions in periodontal tissue. Transmembrane protein 2 (TMEM2), a novel cell surface hyaluronidase, has been shown to play a critical role during embryogenesis. In this study, we demonstrate Tmem2 messenger RNA expression in inner enamel epithelium and presecretory, secretory, and mature ameloblasts. Tmem2 knock-in reporter mice reveal TMEM2 protein localization at the apical and basal ends of secretory ameloblasts. Micro-computed tomography analysis of epithelial-specific Tmem2 conditional knockout (Tmem2-CKO) mice shows a significant reduction in enamel layer thickness and severe enamel deficiency. Enamel matrix protein expression was remarkably downregulated in Tmem2-CKO mice. Scanning electron microscopy of enamel from Tmem2-CKO mice revealed an irregular enamel prism structure, while the microhardness and density of enamel were significantly reduced, indicating impaired ameloblast differentiation and enamel matrix mineralization. Histological evaluation indicated weak adhesion between cells and the basement membrane in Tmem2-CKO mice. The reduced and irregular expressions of vinculin and integrin ß1 suggest that Tmem2 deficiency attenuated focal adhesion formation. In addition, abnormal HA accumulation in the ameloblast layer and weak claudin 1 immunoreactivity in Tmem2-CKO mice indicate impaired tight junction gate function. Irregular actin filament assembly was also observed at the apical and basal ends of secretory ameloblasts. Last, we demonstrated that Tmem2-deficient mHAT9d mouse ameloblasts exhibit defective adhesion to HA-containing substrates in vitro. Collectively, our data highlight the importance of TMEM2 in adhesion to HA-rich extracellular matrix, cell-to-cell adhesion, ameloblast differentiation, and enamel matrix mineralization.


Assuntos
Hipoplasia do Esmalte Dentário , Camundongos , Animais , Hipoplasia do Esmalte Dentário/genética , Microtomografia por Raio-X , Esmalte Dentário/metabolismo , Ameloblastos/metabolismo , Amelogênese/genética , Camundongos Knockout , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
15.
Ecotoxicol Environ Saf ; 260: 115089, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37271104

RESUMO

Perfluorooctanoic acid (PFOA) is an artificial fluorinated organic compound that has generated increased public attention due to its potential health hazards. Unsafe levels of PFOA exposure can affect reproduction, growth and development. During tooth enamel development (amelogenesis), environmental factors including fluoride can cause enamel hypoplasia. However, the effects of PFOA on ameloblasts and tooth enamel formation remain largely unknown. In the present study we demonstrate several PFOA-mediated cell death pathways (necrosis/necroptosis, and apoptosis) and assess the roles of ROS-MAPK/ERK signaling in PFOA-mediated cell death in mouse ameloblast-lineage cells (ALC). ALC cells were treated with PFOA. Cell proliferation and viability were analyzed by MTT assays and colony formation assays, respectively. PFOA suppressed cell proliferation and viability in a dose dependent manner. PFOA induced both necrosis (PI-positive cells) and apoptosis (cleaved-caspase-3, γH2AX and TUNEL-positive cells). PFOA significantly increased ROS production and up-regulated phosphor-(p)-ERK. Addition of ROS inhibitor N-acetyl cysteine (NAC) suppressed p-ERK and decreased necrosis, and increased cell viability compared to PFOA alone, whereas NAC did not change apoptosis. This suggests that PFOA-mediated necrosis was induced by ROS-MAPK/ERK signaling, but apoptosis was not associated with ROS. Addition of MAPK/ERK inhibitor PD98059 suppressed necrosis and increased cell viability compared to PFOA alone. Intriguingly, PD98059 augmented PFOA-mediated apoptosis. This suggests that p-ERK promoted necrosis but suppressed apoptosis. Addition of the necroptosis inhibitor Necrostatin-1 restored cell viability compared to PFOA alone, while pan-caspase inhibitor Z-VAD did not mitigate PFOA-mediated cell death. These results suggest that 1) PFOA-mediated cell death was mainly caused by necrosis/necroptosis by ROS-MAPK/ERK signaling rather than apoptosis, 2) MAPK/ERK signaling plays the dual roles (promoting necrosis and suppressing apoptosis) under PFOA treatment. This is the initial report to indicate that PFOA could be considered as a possible causative factor for cryptogenic enamel malformation. Further studies are required to elucidate the mechanisms of PFOA-mediated adverse effects on amelogenesis.


Assuntos
Ameloblastos , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Ameloblastos/metabolismo , Morte Celular , Necrose
16.
Elife ; 122023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37218526

RESUMO

Single-cell transcriptome analysis of zebrafish cells clarifies the signalling pathways controlling skin formation and reveals that some cells produce proteins required for human teeth to acquire their enamel.


Assuntos
Ameloblastos , Dente , Animais , Humanos , Ameloblastos/metabolismo , Peixe-Zebra/genética
17.
Dev Dyn ; 252(10): 1292-1302, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37191055

RESUMO

BACKGROUND: The precise formation of mineralized dental tissues such as enamel and/or dentin require tight transcriptional control of the secretion of matrix proteins. Here, we have investigated the transcriptional regulation of the second most prominent enamel matrix protein, enamelin, and its regulation through the major odontogenic transcription factor, MSX2. RESULTS: Using in vitro and in vivo approaches, we identified that (a) Enam expression is reduced in the Msx2 mouse mutant pre-secretory and secretory ameloblasts, (b) Enam is an early response gene whose expression is under the control of Msx2, (c) Msx2 binds to Enam promoter in vitro, suggesting that enam is a direct target for Msx2 and that (d) Msx2 alone represses Enam gene expression. CONCLUSIONS: Collectively, these results illustrate that Enam gene expression is controlled by Msx2 in a spatio-temporal manner. They also suggest that Msx2 may interact with other transcription factors to control spatial and temporal expression of Enam and hence amelogenesis and enamel biomineralization.


Assuntos
Odontogênese , Fatores de Transcrição , Animais , Camundongos , Ameloblastos/metabolismo , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
18.
J Dent Res ; 102(9): 1047-1057, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37249312

RESUMO

Tooth enamel is generated by ameloblasts. Any failure in amelogenesis results in defects in the enamel, a condition known as amelogenesis imperfecta. Here, we report that mice with deficient autophagy in epithelial-derived tissues (K14-Cre;Atg7F/F and K14-Cre;Atg3F/F conditional knockout mice) exhibit amelogenesis imperfecta. Micro-computed tomography imaging confirmed that enamel density and thickness were significantly reduced in the teeth of these mice. At the molecular level, ameloblast differentiation was compromised through ectopic accumulation and activation of NRF2, a specific substrate of autophagy. Through bioinformatic analyses, we identified Bcl11b, Dlx3, Klk4, Ltbp3, Nectin1, and Pax9 as candidate genes related to amelogenesis imperfecta and the NRF2-mediated pathway. To investigate the effects of the ectopic NRF2 pathway activation caused by the autophagy deficiency, we analyzed target gene expression and NRF2 binding to the promoter region of candidate target genes and found suppressed gene expression of Bcl11b, Dlx3, Klk4, and Nectin1 but not of Ltbp3 and Pax9. Taken together, our findings indicate that autophagy plays a crucial role in ameloblast differentiation and that its failure results in amelogenesis imperfecta through ectopic NRF2 activation.


Assuntos
Ameloblastos , Amelogênese Imperfeita , Camundongos , Animais , Ameloblastos/metabolismo , Amelogênese Imperfeita/genética , Microtomografia por Raio-X , Fator 2 Relacionado a NF-E2/metabolismo , Amelogênese/genética , Camundongos Knockout , Proteínas Supressoras de Tumor/metabolismo , Proteínas Repressoras/metabolismo
19.
Stem Cell Reports ; 18(5): 1166-1181, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37084723

RESUMO

Organoid models provide powerful tools to study tissue biology and development in a dish. Presently, organoids have not yet been developed from mouse tooth. Here, we established tooth organoids (TOs) from early-postnatal mouse molar and incisor, which are long-term expandable, express dental epithelium stem cell (DESC) markers, and recapitulate key properties of the dental epithelium in a tooth-type-specific manner. TOs display in vitro differentiation capacity toward ameloblast-resembling cells, even more pronounced in assembloids in which dental mesenchymal (pulp) stem cells are combined with the organoid DESCs. Single-cell transcriptomics supports this developmental potential and reveals co-differentiation into junctional epithelium- and odontoblast-/cementoblast-like cells in the assembloids. Finally, TOs survive and show ameloblast-resembling differentiation also in vivo. The developed organoid models provide new tools to study mouse tooth-type-specific biology and development and gain deeper molecular and functional insights that may eventually help to achieve future human biological tooth repair and replacement.


Assuntos
Ameloblastos , Incisivo , Animais , Camundongos , Humanos , Dente Molar , Diferenciação Celular , Organoides , Biologia
20.
FASEB J ; 37(4): e22861, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36929047

RESUMO

Enamel is formed by the repetitive secretion of a tooth-specific extracellular matrix and its decomposition. Calcification of the enamel matrix via hydroxyapatite (HAP) maturation requires pH cycling to be tightly regulated through the neutralization of protons released during HAP synthesis. We found that Gpr115, which responds to changes in extracellular pH, plays an important role in enamel formation. Gpr115-deficient mice show partial enamel hypomineralization, suggesting that other pH-responsive molecules may be involved. In this study, we focused on the role of Gpr111/Adgrf2, a duplicate gene of Gpr115, in tooth development. Gpr111 was highly expressed in mature ameloblasts. Gpr111-KO mice showed enamel hypomineralization. Dysplasia of enamel rods and high carbon content seen in Gpr111-deficient mice suggested the presence of residual enamel matrices in enamel. Depletion of Gpr111 in dental epithelial cells induced the expression of ameloblast-specific protease, kallikrein-related peptidase 4 (Klk4), suggesting that Gpr111 may act as a suppressor of Klk4 expression. Moreover, reduction of extracellular pH to 6.8 suppressed the expression of Gpr111, while the converse increased Klk4 expression. Such induction of Klk4 was synergistically enhanced by Gpr111 knockdown, suggesting that proper enamel mineralization may be linked to the modulation of Klk4 expression by Gpr111. Furthermore, our in vitro suppression of Gpr111 and Gpr115 expression indicated that their suppressive effect on calcification was additive. These results suggest that both Gpr111 and Gpr115 respond to extracellular pH, contribute to the expression of proteolytic enzymes, and regulate the pH cycle, thereby playing important roles in enamel formation.


Assuntos
Hipomineralização do Esmalte Dentário , Receptores Acoplados a Proteínas G , Animais , Camundongos , Ameloblastos/metabolismo , Hipomineralização do Esmalte Dentário/genética , Hipomineralização do Esmalte Dentário/metabolismo , Células Epiteliais/metabolismo , Concentração de Íons de Hidrogênio , Calicreínas/metabolismo , Receptores Acoplados a Proteínas G/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...